

SciWork 2020 Packaging Tutorial

This tutorial walks you through how to package a simple Python project. It will
show you how to add the necessary files and structure to create the package, how
to build the package, and how to upload it to a package index (such as PyPI).

Contents

	Set up a Development Environment
	Install development tools

	Register an account on Test PyPI

	Put code in a directory

	Describe the project
	Creating README.md

	Creating pyproject.toml

	Creating setup.cfg

	Creating setup.py

	Distribute the Project
	Build the distributions

	Upload the distributions

	Test package installation

	Optional: Release your package to PyPI.org

	Distribute a Conda Package
	Creating meta.yaml

	Creating build scripts

	Building the package

	Testing the Conda package

	Optional: Building for a different Python version

	Optional: Converting a package for use on all platforms

	Optional: Uploading to Anaconda.org

	Distribute Private Projects
	Custom Conda channels

	“Find-links” pages

	devpi

	Further Guides

Indices and tables

	Index

	Module Index

	Search Page

Set up a Development Environment

Please have the followings ready before you start:

	Any Python installation with pip available.

	Conda from either Miniconda [https://conda.io/en/latest/miniconda.html] or Anaconda.

Please arrive early to the tutorial if you are not sure whether you have all
things set up. The lecturer will help get things ready.

Install development tools

Run the following command to install/update the needed development tools.

Anaconda:

conda install conda-build

On Windows:

py -3 -m pip install --upgrade pip setuptools wheel twine

On Mac or Linux:

python3 -m pip install --upgrade pip setuptools wheel twine

Note

For brevity, we will use py -3 from here on. Please substitute it to
python3 yourself as needed, if you used python3 for the above
command.

Register an account on Test PyPI

Register an account at https://test.pypi.org/account/register/.

Follow the steps to complete registration. You will also need to
verify your email address to be able to upload packages.

Put code in a directory

This tutorial uses a simple project named sampleproject. The complete
source is available at https://github.com/pypa/sampleproject.git. We will be
creating the project from scratch, but you can use the repository as a
reference if anything is not working.

If you already have a project that you want to package up, and feel confident
to do so, simply replace the sample directory with the one you want to use,
and replace the metadata as appropriate.

We start with the following file structure:

sampleproject/
 sample/
 __init__.py

All of the commands in this tutorial will need to be run within the top-level
directory just created. Be sure to cd sampleproject into the project
directory to run following commands successfully.

Note

Put some code in __init__.py so it is easy to test. For example:

def greet():
 print("Hello!")

And test it like this:

$ py -3 -c "import sample; sample.greet()"
Hello!

Describe the project

Create some additional files in the project root directory, alongside the
sample directory. You should end up with the following structure:

sampleproject-YOUR-USERNAME/
 sample/
 __init__.py
 pyproject.toml
 README.md
 setup.cfg
 setup.py

Creating README.md

A README file is essential for people (including yourself in the future) to
understand what the project is doing. You can put some text inside this file to
describe the project, using the GitHub-flavored Markdown [https://guides.github.com/features/mastering-markdown/] syntax. Put in the
following content if you are not sure what to write:

Example Package

This is a simple example package. You can use
GitHub-flavored Markdown to write your content.

Creating pyproject.toml

Add the following content:

This file describes how we want to package the project. We will be using
Setuptools [https://setuptools.readthedocs.io/en/latest/], a packaging tool maintained by the Python Packaging Authority
(PyPA).

Creating setup.cfg

This file tells Setuptools about the project (such as the name and version), as
well as which code files to include.

Change the name value to include your username (for example,
sampleproject-uranusjr), to make the proejct name unique, and does not
conflict with other people when you upload it. Or you can use any name you like
(as long as it is not already registered—search on the PyPI [https://pypi.org/] to find out).

[metadata]
name = sampleproject-YOUR-USERNAME
version = 0.0.1
author = Example Author
author_email = author@example.com
description = A small example package
long_description = file: README.md
long_description_content_type = text/markdown
url = https://github.com/pypa/sampleproject
license = MIT
classifier =
 Programming Language :: Python :: 3
 License :: OSI Approved :: MIT License
 Operating System :: OS Independent

[options]
packages = find:
python_requires = >=3.6

Here is a run-down of the configuration:

	name is the distribution name of your package. This can be any name as
long as only contains letters, numbers, _, and -. It also must not
already be taken on the PyPI. Be sure to update this with your username,
as this ensures you won’t try to upload a package with the same name as one
which already exists when you upload the package.

	version is the package version. See PEP 440 [https://www.python.org/dev/peps/pep-0440/] for more details on
versions.

	author and author_email are used to identify the author of the
package.

	description is a short, one-sentence summary of the package.

	long_description is a detailed description of the package. This is
shown on the package detail package on the PyPI. Here, we tell Setuptools to
use the content of README.md, which is a common pattern.

	long_description_content_type tells the index what type of markup is
used for the long description. In this case, it’s Markdown.

	url is the URL for the homepage of the project. For many projects, this
will just be a link to GitHub, GitLab, Bitbucket, or similar code hosting
service.

	license describes what license this project uses—Here we use MIT, but
there are many more choices available. Omit this field if you do not intend
your code to be open source.

	classifiers gives the index and pip some additional metadata about your
package. In this case, the package described as

	Only compatible with Python 3

	Uses the MIT license

	Does not care about operating systems

A complete list of classifiers can be found at https://pypi.org/classifiers/.

	packages is a list of all Python code that should be included in the
distribution package. Instead of listing each package manually, we can use
the find derivative to automatically discover all packages and
subpackages. This is also a common pattern unless you have an uncommon
project layout.

	python_requires descibes what versions of Python this project is
compatible with. Here, we only allow the project to be installed on Python
3.6 or later.

The keys listed above is a relatively minimal set, and there a a few more you
can specify. Visit the documentation on setup.cfg [https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files] to find a comprehensive
list of available configurations.

Creating setup.py

setup.py is a script to call Setuptools. It can be used to include custom
logic to build the project, but we are using all defaults here. Simply put:

import setuptools
setuptools.setup()

Distribute the Project

With the metadata declared, we can now ask Setuptools to generate
distribution packages, which are archives containing files to be installed
on the target machine.

Build the distributions

Use the following command to build distributions:

py -3 setup.py sdist bdist_wheel

This command should output a lot of text. Once completed, it should generate
two files in the dist directory:

dist/
 sampleproject_YOUR_USERNAME-0.0.1-py3-non3-any.whl
 sampleproject-YOUR-USERNAME-0.0.1.tar.gz

The tar.gz file is a source distribution (sdist), and the .whl file
is a built distribution in the wheel format. Newer pip versions
prefer to install built distributions, but will fall back to sdist if there are
no built distributions compatible with the user’s platform. In this case, our
example package is compatible with Python on any platform, so only one built
distribution is needed.

Warning

If you made mistakes in your setup.cfg and want to change it, make sure
to delete previously-generated metadata before running setup.py again.

On Windows:

rmdir /q /s build dist
del sampleproject_YOUR_USERNAME.egg-info

On macOS and Linux:

rm -rf build dist sampleproject_YOUR_USERNAME.egg-info

Upload the distributions

Now we can upload the files to the package index. For demostration purposes, we
will be uploading to Test PyPI. This is a separate instance of the package
index, intended for testing and experimentation. This is great for things like
this tutorial, where we don’t necessarily want to upload “for real.”

Make sure to Register an account on Test PyPI before you continue with the tutorial.

Use the following command to upload the distributions built in the previous
section:

py -3 -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Enter your username and password when prompted.

Once the command finished successfully, your package should be viewable on
Test PyPI at e.g. https://test.pypi.org/project/sampleproject-YOUR-USERNAME.

Congratulations, you have successfully packaged and distributed a Python
project!

Test package installation

The package uploaded to Test PyPI can be installed with pip, like you would any
other package, by explicitly specifying the “index” to install from:

py -3 -m pip install --index-url https://test.pypi.org/simple sampleproject-YOUR-USERNAME

Now try to use it by running py -3:

>>> import sample
>>> sample.greet()
Hello!

Optional: Release your package to PyPI.org

By uploading the package to PyPI.org (instead of Test PyPI), you are telling
the world the package is ready for download. The steps are simple—Register an
accout on PyPI.org [https://pypi.org], build the distributions like before, and change the
repository URL in the upload command:

py -3 -m twine upload --repository-url https://pypi.org/legacy/ dist/*

The only difference is to use pypi.org (removing the test. part).
That’s it! Now people can install your package directly:

py -3 -m pip install sampleproject-YOUR-USERNAME

There are some caveats though:

	Files uploaded to PyPI are immutable. More especifically, although deletion
is possible, your cannot re-upload a file. So be extra careful before you
release to PyPI. The only way to override a mistake on PyPI is to release a
new version.

	Following the previous point, it is usually a good idea to delete the
build, dist, and .egg-info directories every time you want to
release a new version, to make sure the files are all in the newest version.

	Accounts and packages on Test PyPI and (real) PyPI are all distinct. You do
not automatically own a package on PyPI by uploading it to Test PyPI, and
vice versa.

Distribute a Conda Package

As with Setuptools, we also need to provide both some description and
build instruction for a Conda package. More specifically, three files are
needed:

	meta.yaml

	build.sh

	blt.bat

Put them in the project root (alongside with other metadata files such as
README.md, pyproject.toml).

Creating meta.yaml

This is used to describe the package.

package:
 name: sampleproject-YOUR-USERNAME
 version: "0.0.1"
about:
 home: https://github.com/pypa/sampleproject
 license: MIT
 summary: A small example package
source:
 fn: sampleproject-YOUR-USERNAME-0.0.1.tar.gz
 url: https://test.pypi.org/packages/source/s/sampleproject-YOUR-USERNAME/sampleproject-YOUR-USERNAME-0.0.1.tar.gz
 md5: "39180d64b5021c5399a2568fe2103cd2"

requirements:
 build:
 - pip >=19
 - python >=3.6
 run:
 - python >=3.6

Note

Remember to replace YOUR-USERNAME with your own name.

Warning

Make sure to quote the version and md5 fields! Otherwise YAML may
interpret them as numbers. Also, the extension is yaml, not yml.

Here, we instruct Conda about basic project information (package and
about sections), where to download it (source), and what other packages
are needed in order to build and run it.

Unlike PyPI, Conda does not allow uploading source code (only built files), so
you need to upload your code somewhere else, and use meta.yaml to tell
Conda where it is.

Here, we are re-using our data on Test PyPI (or the real PyPI, if you
eventually release the package to the public). The package URL is predictable,
and based on your package name (the first /s/ part is the package name’s
first letter).

The MD5 value is used by Conda to make sure it downloads the correct file. It
can be calculated using a local command.

On Windows:

fciv -md5 dist\sampleproject-YOUR-USERNAME-0.0.1.tar.gz

On macOS:

md5 dist/sampleproject-YOUR-USERNAME-0.0.1.tar.gz

On Linux:

md5sum dist/sampleproject-YOUR-USERNAME-0.0.1.tar.gz

Alternatively, you can also view this on your PyPI project page at
https://test.pypi.org/project/sampleproject-YOUR-USERNAME/#files. Click on the
View button beside the .tar.gz file, and copy the hash digest field on
the MD5 row.

Creating build scripts

Conda packages use two files to build: build.sh and bld.bat. These two
are basically the same thing, but one for installing on Windows, and one for on
Linux and macOS. It is highly recommended you provide both if possible
(unless you really don’t want the package to be installed on a platform).

build.sh:

"$PYTHON" -m pip install --no-deps .

bld.bat:

"%PYTHON%" -m pip install --no-deps .
exit %errorlevel%

Building the package

In the project root (where meta.yaml is), use conda build to generate a
Conda package:

conda build .

This will generates a lot of text. When it finished, you should see something
like the following near the end:

TEST START: ~/miniconda/conda-bld/linux-64/sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2
Nothing to test for: ~/miniconda/conda-bld/linux-64/sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2
Automatic uploading is disabled
If you want to upload package(s) to anaconda.org later, type:

anaconda upload ~/miniconda/conda-bld/linux-64/sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2

This means that the package has been built successfully. The TEST START and
anaconda upload lines also shows the location of the package; in this case
it is:

~/miniconda/conda-bld/linux-64/sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2

Save this path somewhere; it will be useful in the following (optional)
sections.

Testing the Conda package

You can try installing the newly built package into your Conda environment:

conda install --use-local sampleproject-YOUR-USERNAME

The --use-local flag instructs Conda to install the local conda-build
channel on your computer, rather than the default Anaconda or conda-forge.

If installed successfully, the package will be present in conda list.

Optional: Building for a different Python version

The package built above was against Python 3.8 (the file name contains a
py38 part). Conda by default builds packages for the version of Python
installed in the root environment. To build packages for other versions of
Python, use the --python flag followed by a version:

conda build --python 3.6 sampleproject-YOUR-USERNAME

Notice that the file printed at the end of the output would change to reflect
the requested version of Python. When you conda install, it will look in
the package directory for the file that matches your current Python version.

Optional: Converting a package for use on all platforms

Similar to the Python version, Conda by default requires you to build the
package on each platform, to make sure the uploaded files are always correctly
built. We built against linux-64 (Linux, 64-bit) in the above example.
Sometimes, however, you are very sure the package works on all platforms.
Conda can convert the package for you in this case:

conda convert --platform all ~/miniconda/conda-bld/linux-64/sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2

Replace the final path with your package location saved above.

Optional: Uploading to Anaconda.org

After converting your files for use on other platforms, you may choose to
upload your files to Anaconda.org [https://anaconda.org]. You will need to register an account
(sign up) on the website first.

Make sure you have the Anaconda Client installed:

conda install anaconda-client

And log in (sign in) into your registered Anaconda account:

anaconda login

After that, you can use the command to upload packages:

anaconda upload ~/miniconda/conda-bld/linux-64/sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2

Replace the final path with your package location saved above. Packages built
against another Python, or converted by conda convert can also be uploaded
in the same way, to make your package support multiple Python versions and
platforms.

Distribute Private Projects

We have been talking about how to release your package to the public, and it is
a common misconception that package publishing is only for open source.

While it is true that Python package managers are more focused on working with
open source (because they are part of it), they are also used by a lot of
people to publish packages in private settings, so various projects in a
company can easily share code, deploy software, and manage version upgrades.

Custom Conda channels

In Conda, you can choose to install packages from a specific channel, which
means Conda will look at that location for the package.
Anaconda for Enterprise [https://www.anaconda.com/enterprise/] offers a private channel service (i.e. publish
packages that only authorised people can download), but it is also easy to
run a channel server yourself, either with HTTP(S), or even with a shared disk
that’s accessible with file://.

A Conda channel is structured like this:

channel/
 linux-64/
 ... packages
 linux-32/
 ... packages
 osx-64/
 ... packages
 win-64/
 ... packages
 win-32/
 ... packages

The root directory can be any directory on disk, and can take any name, but
here we use channel as an example. Each directory inside root represents
a platform to support; you can omit any you do not plan to support. Package
files (like our previous sampleproject-YOUR-USERNAME-0.0.1-py38_0.tar.bz2)
are put inside each directory to make them downloadable.

Run the following command to generate a repository listing:

conda index channel/

This will generate a file repodata.json in each repository directory, which
Conda uses to get the metadata for the packages in the channel.

Note

Re-run conda index each time you add or modify anything in the channel
(e.g. release a new package version), to keep the metadata up-to-date.

To install from the custom index, use the following syntax:

conda install --channel=file://path/to/channel/ sampleproject-YOUR-USERNAME

You can also set up the channel in your .condarc [https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html] to avoid specifying the
channel every time.

“Find-links” pages

TODO…

devpi

TODO…

Further Guides

TODO…

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 SciWork 2020 Packaging Tutorial

 		
 Set up a Development Environment

 		
 Install development tools

 		
 Register an account on Test PyPI

 		
 Put code in a directory

 		
 Describe the project

 		
 Creating README.md

 		
 Creating pyproject.toml

 		
 Creating setup.cfg

 		
 Creating setup.py

 		
 Distribute the Project

 		
 Build the distributions

 		
 Upload the distributions

 		
 Test package installation

 		
 Optional: Release your package to PyPI.org

 		
 Distribute a Conda Package

 		
 Creating meta.yaml

 		
 Creating build scripts

 		
 Building the package

 		
 Testing the Conda package

 		
 Optional: Building for a different Python version

 		
 Optional: Converting a package for use on all platforms

 		
 Optional: Uploading to Anaconda.org

 		
 Distribute Private Projects

 		
 Custom Conda channels

 		
 “Find-links” pages

 		
 devpi

 		
 Further Guides

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

